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1 Hardness of approximation for systems of quadratic equations

Problem (QuadEq). Given a matrix A ∈ {0, 1}m×n2
and a vector b ∈ {0, 1}m, find an

assignment w ∈ {0, 1}n such that

A(w ⊗ w) = b mod 2 . (1)

Here, ⊗ is the Kronecker product for matrices and vectors. This operator is often
pronounced “tensor”. In our setting, w ⊗w is a n2-dimensional vector indexed by pairs
(i, j) with i, j ∈ [n] such that

(w ⊗ w)i j = wi · w j . (2)

Therefore, (1) is equivalent to a list of k homogeneous quadratic equations in the variables
w1, . . . ,wn,

∀k ∈ [m].
∑

i, j∈[n]

Ak,i jwiw j = bk mod 2 . (3)

It is NP-complete to decide if for a given instance of QuadEq all equations can be
satisfied.

Can we efficiently find an assignment that satisfies many equations of a given satisfiable
system?

Notation. Let MaxQuadEq be the problem of finding an assignment that satisfies
as many equations as possible. Let opt(A, b) denote the maximum fraction of satisfied
equations over all assignments w.

The following theorem shows that it is NP-hard to achieve an approximation ratio of
0.51 for MaxQuadEq.

Theorem. There exists a (randomized) polynomial-time function f that maps every
MaxQuadEq instance (A, b) to a MaxQuadEq instance (A′, b′) such that

• YES: If opt(A, b) = 1, then opt(A′, b′) = 1.
• NO: If opt(A, b) < 1, then opt(A′, b′) < 0.51 with probability 0.99 over the

randomness of the function f .
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Aside: A random assignment achieves approximation ratio 1/4. It is NP-hard to achieve
a strictly larger approximation ratio. For satisfiable instances, approximation ratio 3/8 is
possible and it is NP-hard to achieve a strictly larger approximation ratio.

1.1 Proof of theorem

Let (A, b) be an instance of QuadEq with n variables and m equations. Let R ∈ {0, 1}d×m be
a random matrix for d to be determined later. (We can choose d = 1000n.)

We define the randomized function f by choosing A′ = RA and b′ = Rb. In other words,
the resulting system of quadratic equations RA(w ⊗ w) = Rb consists of d random linear
combinations of the original system A(w ⊗ w) = b.

YES case: If opt(A, b) = 1, then there exists an assignment w that satisfies the quadratic
system A(w ⊗ w) = b. The same assignment also satisfies RA(w ⊗ w) = b. Therefore,
opt(A′, b′) = 1.

NO case: Suppose opt(A, b) < 1. We will show the following claim.
Claim: For every assignment w ∈ {0, 1}n,

P
R

{
w satisfies at least 0.51d equations of (A′, b′)

}
< 0.01 · 2−n . (4)

This claim implies the NO case of the theorem by the union bound.

P
R

{
opt(A′, b′) ≥ 0.51

}
≤

∑
w∈{0,1}n

P
R

{
w satisfies at least 0.51d equations of (A′, b′)

}
< 2n

· 0.01 · 2−n by Claim
≤ 0.01 .

(5)

It remains to prove the claim.
Proof of claim: Since the system (A, b) is not satisfiable, the vector y = A(w⊗w) mod 2 is

not the 0 vector. Therefore, Ry mod 2 is a uniformly random vector in {0, 1}d. (Exercise.)
Thus, the random variables X1, . . . ,Xd with Xi = 1 − (Ry)i are independent Bernoulli
variables with probability 1/2 of being equal to 1. Note that Xi = 1 if assignment w satisfies
the i-th constraint of the system (A′, b′) and Xi = 0 otherwise. Therefore,

∑d
i=1 Xi is the

number of constraints of (A′, b′) satisfied by w. By the Chernoff bound,

P
{ d∑

i=1

Xi ≥ (1 + ε)d/2
}
≤ e−ε

2d/6 . (6)

We choose ε = 2/100 and d = 12n/ε2. Then for n ≥ 6,

P
{ d∑

i=1

Xi ≥ 0.51d
}
≤ e−ε

2d/6 = e−2n
≤ 2−n

· 2−n
≤ 0.01 · 2−n . (7)

This bound proves the claim because by our choice of X1, . . . ,Xd, the event
∑d

i=1 Xi ≥ 0.51d
is the same as the event that w satisfies at least 0.51d equations of (A′, b′). �
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2 Verifier view of the PCP theorem

A useful definition of NP is in terms of polynomial time verifiers.

Let L ⊆ {0, 1}∗ be a language. Then, L ∈ NP if and only if there exists a polynomial-time
algorithm V and a polynomial p such that

L =
{
x | ∃π. |π| ≤ p(|x|) ∧ V(x, π) = 1

}
(8)

In words, NP consists of all decision problems such that every YES instance of the
problem has a proof for being a YES instance that can be checked in time polynomial in
the length of the instance.

Recall the statement of the PCP theorem.

PCP theorem: There exists a polynomial-time function f that maps every 3Sat instance
x to a Max3Sat instance ϕ with the following properties:

• YES: if x is satisfiable then opt(ϕ) = 1
• NO: if x is not satisfiable then opt(ϕ) < 0.99

Using the function f from the statement of this theorem we can construct a randomized
verifier for 3Sat.

Randomized verifier VPCP for 3Sat:
Given: 3Sat instance x and a purported proof π of satisfiability

• compute Max3Sat instance ϕ = f (x),
• choose clauses C1, . . . ,Ct uniformly at random from ϕ for t = 1000,
• check that π satisfies clauses C1, . . . ,Ct.1

This randomized verifier has the following remarkable properties:

Properties of VPCP:

• YES: if x is satisfies, then there exists π such that VPCP(x, π) = 1 with probability
1.
• NO: if x is not satisfiable, then every π satisfies VPCP(x, π) = 1 with probability

at most 0.001.
• Efficiency: VPCP runs in polynomial time and in addition satisfies:
• Queries: VPCP on inputs x and π queries at most O(1) positions of π. (The

number of queries is independent of the length of the inputs.)
• Randomness: VPCP on inputs x and π uses at most O(1) · log|x| random bits.
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The YES and NO case properties of the verifier VPCP are similar to the properties of a
polynomial-time verifier for 3Sat in the sense of (8). The difference is that in the NO case
VPCP is allowed to answer incorrectly with low probability over the internal randomness
of VPCP.

The key property VPCP is about query efficiency. This randomized can verify the
correctness of a purported satisfiability proof π by examining only a constant number of
bits in the proof.

It turns out that any randomized verifier with the properties above can be used to
construct a function f as described in the statement of the PCP theorem above.

Informal statement of the PCP theorem: There exists a randomized polynomial-time
algorithm that can verify the correctness of a purported satisfiability proof by examining
only a constant number of bits of it.

Footnotes

1. Here, we view π as an assignment for the variables of ϕ. Therefore, in order to check whether π satisfies the
clauses C1, . . . ,Ct we only need to query the assigned values for the 3t variables that appears in the clauses
C1, . . . ,Ct.
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