Explicit expander graphs: Zig-Zag product

We will describe the zig-zag product of graphs, which allows us to reduce the degree of a
graph while approximately maintaining its eigenvalue gap.

Let G be a regular graph with n vertices and degree D. (Think of n as a growing
parameter and D as large but absolut constant.)

Let H be a regular graph with D vertices and degree d. (Think of 4 as a relatively small
absolut constant, e.g., d = 100.)

Suppose that H is a very good expander, i.e., eigenvalue gap close to 1. (Since H has
only constant size and we know that graphs with these properties exist, we could compute
H efficiently by brute force.)

We will consider graphs with vertex set [1] X [D]. We think of this set as n disjoint clouds
of size D.

The first graph we consider is I, ® H, which consists of n disjoint copies of H, one copy
per cloud. (The notation I, ® H stems from the fact that the random walk matrix of the
graph is the tensor product of the matrix I, and the random walk matrix of H.)

Next, we consider a graph G obtained from G by splitting every vertex into D new
vertices, one for each edge. In other words, Gisa perfect matching on [n] X [D] such that
contracting each cloud yields the graph G.!

The idea of the zig-zag product is to combine the two graphs G and I,, ® H to obtain a
graph on [n] X[D] with much smaller degree than G but approximately the same eigenvalue
gap.

Why should the graphs G and I, ® H be helpful? One good thing is that both graphs
have small degrees. In fact, G has only degree 1. Another good thing is that from far away
(i.e., if we contract the clouds), the graph G looks exactly like G (recall that we wanted the
new graph to have the same eigenvalue gap as G). In the zig-zag construction, the graph
I, ® H allows us to effectively contract the clouds, while maintaining small degree.

Definition: The zig-zag product of G with H is the graph

GrH=(,®H)-G-(I,®H). (1)

The following lemma shows that G ® H and G have the same eigenvalue gap up to a
y(H)? factor. (If we choose H carefully, then y(H) ~ 1.)

Lemma: (G ® H) > y(G) - y(H)>.

Proof:

We will use the following useful characterization of the eigenvalue gap: A graph has
eigenvalue gap at least y if and only if its random walk matrix is a convex combination of
the walk matrix of the complete graph and a matrix with largest eigenvalue at most 1 such
that the walk matrix of the complete graph has weight at least y.

Hence, we can write H = yyJp + (1 — yx)Eq for yg = y(H) and a matrix Eg with largest
eigenvalue at most 1.

Using this decomposition for H, we can see that G ® H is a convex combination of four
matrices,

G®H = y}(I, ® Jp)G(I, ® Jp) 2



+ yu(l = yu)(Ix ® Ip)G(I, ® Ep) (3)
+ (1= yr)yn(l: ® En)G(I, ® Jp) (4)
+ (1 -ym)*(I, ® En)G(I, ® Ep). 5)

All four matrices have eigenvalues at most 1. Hence,
GwH =y}l ® Jp)G(l, @ Jp) + (1 = y})E (6)

for a matrix E with eigenvalues at most 1.

How does the graph (I, ®] p)G(I, ® Jp) look like? We claim that this graph is essentially G.
(The reason is that the multiplications with (I, ® Jp effectively contract the clouds and we
already noted that this contraction makes Ginto G.) Formally, (I, ®] p)GI,®]p) =GR Jp.”

The graph G ® Jp has eigenvalue gap yc = y(G). Hence, we can write it as a convex
combination G® Jp = Y - Jpn + (1 — yg)E’ for a matrix E’ with eigenvalues at most 1.

It follows that G ® H is a convex combination of the three matrices Jp,, E, and E’ (all
with eigenvalues at most 1). The matrix Jp, has weight y%{ -y in this convex combination.
Thus, G ® H has eigenvalue gap at least y7, - yc.

Footnotes

. A more concrete way to construct G from G is to map every edge e between u and v in G to an edge between
to an edge é between (i, i) and (v, i) in G, where i is the index of e for u and j is the index of e for v. (For this
construction, we assign an index i € [D] to every edge incident to a vertex u € [n] in G.)

. Here is one way to see this identity without “index battle”: How does a random step in the graph
(I, ® [p)G(, ® Jp) look like? Let (v, ) be a random neighbor of a vertex (1, i) in this graph. To go from (, ) to
(v, j) we take a random step first in (I, ® Jp, second in G and third in (I, ® Jp). The third step guarantees that
even conditioned on u, v, and i, the distribution of j is uniform. What is the distribution of v conditioned on
u, i, and j? We claim that v is just a random neighbor of u in G. The reason is that in the first step we go to
a random vertex in the cloud of u. Every vertex in this cloud uniquely corresponds to one of the outgoing
edges of u. Hence, we selected a random edge out of u when taking the second step in G (which brings us to
the cloud of a random neighbor v of u). It follows that (v, j) conditioned on (u, i) has the same distribution as
in the graph G ® Jp.



