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We will describe the zig-zag product of graphs, which allows us to reduce the degree of a
graph while approximately maintaining its eigenvalue gap.

Let G be a regular graph with n vertices and degree D. (Think of n as a growing
parameter and D as large but absolut constant.)

Let H be a regular graph with D vertices and degree d. (Think of d as a relatively small
absolut constant, e.g., d = 100.)

Suppose that H is a very good expander, i.e., eigenvalue gap close to 1. (Since H has
only constant size and we know that graphs with these properties exist, we could compute
H efficiently by brute force.)

We will consider graphs with vertex set [n]× [D]. We think of this set as n disjoint clouds
of size D.

The first graph we consider is In ⊗H, which consists of n disjoint copies of H, one copy
per cloud. (The notation In ⊗H stems from the fact that the random walk matrix of the
graph is the tensor product of the matrix In and the random walk matrix of H.)

Next, we consider a graph Ĝ obtained from G by splitting every vertex into D new
vertices, one for each edge. In other words, Ĝ is a perfect matching on [n] × [D] such that
contracting each cloud yields the graph G.1

The idea of the zig-zag product is to combine the two graphs Ĝ and In ⊗H to obtain a
graph on [n]×[D] with much smaller degree than G but approximately the same eigenvalue
gap.

Why should the graphs Ĝ and In ⊗H be helpful? One good thing is that both graphs
have small degrees. In fact, Ĝ has only degree 1. Another good thing is that from far away
(i.e., if we contract the clouds), the graph Ĝ looks exactly like G (recall that we wanted the
new graph to have the same eigenvalue gap as G). In the zig-zag construction, the graph
In ⊗H allows us to effectively contract the clouds, while maintaining small degree.

Definition: The zig-zag product of G with H is the graph

G �H = (In ⊗H) · Ĝ · (In ⊗H). (1)

The following lemma shows that G �H and G have the same eigenvalue gap up to a
γ(H)2 factor. (If we choose H carefully, then γ(H) ≈ 1.)

Lemma: γ(G �H) ≥ γ(G) · γ(H)2.
Proof:
We will use the following useful characterization of the eigenvalue gap: A graph has

eigenvalue gap at least γ if and only if its random walk matrix is a convex combination of
the walk matrix of the complete graph and a matrix with largest eigenvalue at most 1 such
that the walk matrix of the complete graph has weight at least γ.

Hence, we can write H = γH JD + (1 − γH)EH for γH = γ(H) and a matrix EH with largest
eigenvalue at most 1.

Using this decomposition for H, we can see that G �H is a convex combination of four
matrices,

G �H = γ2
H(In ⊗ JD)Ĝ(In ⊗ JD) (2)
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+ γH(1 − γH)(In ⊗ JD)Ĝ(In ⊗ EH) (3)

+ (1 − γH)γH(In ⊗ EH)Ĝ(In ⊗ JD) (4)

+ (1 − γH)2(In ⊗ EH)Ĝ(In ⊗ EH). (5)

All four matrices have eigenvalues at most 1. Hence,

G �H = γ2
H(In ⊗ JD)Ĝ(In ⊗ JD) + (1 − γ2

H)E (6)

for a matrix E with eigenvalues at most 1.
How does the graph (In⊗ JD)Ĝ(In⊗ JD) look like? We claim that this graph is essentially G.

(The reason is that the multiplications with (In ⊗ JD effectively contract the clouds and we
already noted that this contraction makes Ĝ into G.) Formally, (In ⊗ JD)Ĝ(In ⊗ JD) = G⊗ JD.2

The graph G ⊗ JD has eigenvalue gap γG = γ(G). Hence, we can write it as a convex
combination G ⊗ JD = γG · JDn + (1 − γG)E′ for a matrix E′ with eigenvalues at most 1.

It follows that G � H is a convex combination of the three matrices JDn, E, and E′ (all
with eigenvalues at most 1). The matrix JDn has weight γ2

H · γG in this convex combination.
Thus, G �H has eigenvalue gap at least γ2

H · γG.

Footnotes

1. A more concrete way to construct Ĝ from G is to map every edge e between u and v in G to an edge between
to an edge ê between (u, i) and (v, i) in Ĝ, where i is the index of e for u and j is the index of e for v. (For this
construction, we assign an index i ∈ [D] to every edge incident to a vertex u ∈ [n] in G.)

2. Here is one way to see this identity without “index battle”: How does a random step in the graph
(In ⊗ JD)Ĝ(In ⊗ JD) look like? Let (v, j) be a random neighbor of a vertex (u, i) in this graph. To go from (u, i) to
(v, j) we take a random step first in (In ⊗ JD, second in Ĝ and third in (In ⊗ JD). The third step guarantees that
even conditioned on u, v, and i, the distribution of j is uniform. What is the distribution of v conditioned on
u, i, and j? We claim that v is just a random neighbor of u in G. The reason is that in the first step we go to
a random vertex in the cloud of u. Every vertex in this cloud uniquely corresponds to one of the outgoing
edges of u. Hence, we selected a random edge out of u when taking the second step in Ĝ (which brings us to
the cloud of a random neighbor v of u). It follows that (v, j) conditioned on (u, i) has the same distribution as
in the graph G ⊗ JD.
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