1/28—Introduction and review
Reading: §1–2
2/2—Approximation algorithms and PCP theorem
Reading: §11
2/9—PCP theorem: gap amplification and hardness of independent set (pdf version)
Reading: §11.2.2, §11.4, §22.2.1
2/11—PCP theorem: hardness of quadratic equations and verifier view (pdf version)
Reading: §11
2/18—PCP theorem: exponential-size proofs (pdf version)
Reading: §11.5
2/23—PCP theorem: local testing and Fourier analysis (pdf version)
Reading: §22.5
2/25—PCP theorem: constraint satisfaction and alphabet reduction
Reading: §22.1, §22.2.1, §22.2.5
3/1—PCP theorem: alphabet reduction
Reading: §22.2.5
3/3—PCP theorem: gap amplification (pdf version)
Reading: §22.2.4
3/8—PCP theorem: gap amplification (pdf version)
Reading: §22.2.4
3/10—PCP theorem: gap amplification (pdf version)
Reading: §22.2.4
3/15—Degree reduction for 2-CSPs via expanders
3/17—Combinatorial vs spectral expansion (pdf version)
Reading: §21.2
3/22—Random walks on expanders
Reading: §21.1
3/24—Zig-zag product (pdf version)
Reading: §21.3
4/5—Explicit expander graph construction
Reading: §21.3
4/7—Randomness efficient error reduction
Reading: §21.2.5
4/12—Deterministic log-space undirected reachability
Reading: §21.4
4/14—Hardness vs randomness overview
4/19—Refutation lower bounds for Random 3SAT
guest lecturer: Samuel B. Hopkins
4/21—Hardness amplification and Impagliazzo’s hardcore lemma (pdf version)
Reading: §19.1
spring break
4/28—Worst case hardness vs average case hardness via local decoding
Reading: §19.4
5/3—Derandomization and pseudorandom generators
Reading: §20.1, guest lecturer: Aaron Potechin
5/5—Pseudorandom generators from hard functions
Reading: §20.2, guest lecturer: Jonathan Shi
5/10—Optimal Inapproximability and 3-bit PCP
Reading: §22.4